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Abstract—The configurational evolution in time and space of two-dimensional ellipsoidal damage
into an elongated flaw with preferred orientation is solved and studied. The damage is represented
as a single. traction free. ellipsoidal void embedded in an infinitely large time-dependent porous-
like solid. The solid creeps in a power-law fashion under static biaxial loads which induce a
large-scale rotation (with volume enlargement contraction) of the void. In the special case of
unidirectional loading the free boundary of the void evolves into an expanded and elongated new
shape while rotating towards a position codirectional with the principal tensile axis. The sotution
which describes this phenomenon made use of the analogy between linear viscous fluid and incom-
pressible elasticity but has been extended (by incremental time-step integration) to geometrical and
material nonlinearitics. The enlargement of the analysis to multiple-voids interactions (via the *self-
consistent™ approximation) enibles one to follow the porosity time evolution till rupture. The main
outcome is the reinforcement of McClintock and Berg's vision of the ductile rupture mechanism by
void coalescence. The process simulation agrees well with visual observations of void expansion
and rotation in a highly viscous material and with experimental measurements of the rupture
ductilitics of creeping materials with different strain-rate sensitivity index. Similarities and dis-
similaritics with existing phenomenological damage theories are discussed.

[. INTRODUCTION

Structural materials contain, inevitably, a certain number of voids. For some engineering
applications such porous material is beneficial (e.g. for slide bearing cages, for shock wave
attenuation, cte.) but for the purpose of load carrying capacity, the porosity is detrimental.
For creeping materials, in particular, voids may shorten substantially the lifetime for
rupture failure at a given holding load. This issue is examined in this paper.

The physical phenomenon of rupture of creeping materials may, for the purposc of
clarity, be divided into three stages: (a) nucleation of cavities in a form of micro-voids, (b)
steady-state growth of the voids, and (c) rupture by the coalescence of the voids. Each of
the stages is supposedly controlled by a different physical mechanism. Although coupling
between various mechanisms is conceived[l], the growth and coalescence stages are
primarily dominated by continuum creep mechanisms and encompass most of the lifetime
of the solid prior to rupture. Our analysis citn therefore start from a given volume fraction
of an array of voids equally spaced throughout the body, and proceeds by observing their
rotation and growth during creep under remote static loading. Rupture may then be defined
when a representative void reaches a certain dimension, say, half the distance to the adjacent
void, or perhaps more preciscly, when the ligament between voids contracts to zero, so
defined in this work.

A dectailed study of the growth of a single void in a lincar rigid plastic solid was
considered by McClintock([2]. Rice and Tracey[3]. and in a linear viscous solid by Berg[4].
Their solutions have been unified and enlarged by Budiansky et al.[5] to encompass the
power-law constitutive behavior of the materials. [t appears, time and again, that the void
growth behavior is highly sensitive to a hydrostatic stress environment.

In addition to the above study two more featurcs seem essential to consider.

(a) The role of rotation of an ellipsoidal void, noted first by Berg[4]. in hampering/
enhancing its growth rate.
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{b) The interaction between voids (in a “self-consistent™ fashion) akin to the study of
ductile rupture by multi-voids coalescence. The rupture simulation based on (a) and (b)
agrees qualitatively with visual observation of void growth and partially with other solu-
tions[6-8].

The mathematical procedure employed here is based on the Rayleigh analogy between
solutions related to linear elastic and linear viscous solid problems, Aided by Musk-
helishvili's[9] elastic solution. a direct relationship between the prescribed toad and the
velocities of the void-free boundary is gained. This relationship. linear for an arbitrary
small time interval, is integrated throughout the time history of the creeping process with
continuous updating of the material (non-linear) properties and the large (non-linegar)
geometrical changes of the void contiguration. The procedure appeuars efficient and highly
cost effective compared to. say. FEM solutions of a similar nature[8] (the CPU time for a
typical simulation of void growth until rupture under holding load is of the order of | min
onan IBM 3084).

2. CONSTITUTIVE EQUATION AND RATE MEASURES

Consider an unbounded solid with the following time-rate response
o= C()", 0<ngl (1)

where Cand # are material propertics and a and £ are the non-dimensional etfective stress
and strain rate ficlds normalized with respect to predetermined reference values o, and &,
Le. 0 =d/a,, &, = 18, 1T one chooses £, to be the steady-state strain rate corresponding to
the applied stress oy then C = 1 (identically) in egn (1), o and £ are defined in terms of their
tensoriad components (normalized too, as above) by their invariant form as

l
iy 3

Yo o 32 .
a=(32s,s)" " s, =0

(5,,0kk (2)

, o1
§o= (238,67, £, = (u,+u,) (3)

where u, is the velocity ficld at the considered point. Time integration of eqns (3) represents

the total strain history as
g, = f £, dt. @)
1}

The equivitlence of eqn (1) in tensorial form can be shown to be

& Lo

£, = (3/2) - & gt (5)

Perfectly plastic solids (n = 0) and linecar viscous solids (n = 1) are, as indicated. the extreme
values of exponent n. Equation (3) can be written as

) l
&y = :,‘I AN (6)

so that the parameter i represents the viscosity of the solid defined from egn (5) as
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Fig. 1. The geometry of an elliptical void and its orientation with respect to the principal (vertical)
load.

n() = (113HCE™ " M

Let an isolated elliptical two-dimensional void be embedded in the solid, such that its major
axis is oriented at an angle x, to the far-ficld principal stress direction (Fig. 1). First we will
assume that the volume comprising the void is negligible compared with the volume of the
solid so that the uniformity of the ficld o,, &, away from the void is (nearly) unperturbed
(this restriction will be relaxed later when porosity considerations are introduced). The
three independent geometrical variables which completely define the current void con-
figuration were chosen (for convenience) to be:

the “‘eccentricity”; m = (a—b)/(a+b), dbsm<1
the “perimeter™; R = (a+h)/2, R>0 )
the “orientation™; a = major axis orientation, 0<a<90.

Associated parameters are the aspect ratio 2 = a/b, and time-growth rates (£, 4, b, m, etc.)
derived with respect to a normalized time, ¢, namely

[ = l'éu. (9)

During the creeping process the velocity field of the void’s free surface, u,(s) (derived next),
is used repeatedly to update the void configuration at small time increments. The local
strain-rate ficld £ associated with the motion u,(s) of the void surface S, is

1 1 1 |
ey — {1t . = — - ;
8= J1 2(::,,,+z:,_,) dv. v ,[ 2(u,n,+u,n,) ds (10)

via the divergence theorem,
Assuming that the evolving shape of the void retains its ellipsoidal form, the principal
strain rate of eqn (10) is

& = blb, &9 = dfa (n

so that a measure of the effective strain rate, attributed to the void evolution in the plane-
stress case, is reduced to
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£ = (2/4/3) ((d/a)* + (b;b)* + (d/a) (/b)) (12)

3. ELASTIC SOLUTION—RECAPITULATION

Any remote static load applied on an infinite elastic two-dimensional body (with shear
modulus u) will produce a displacement field surrounding a traction-free cylindrical void
of arbitrary shape by the following expression[9] :

. 1
u+tic = — (1 + (=) (13)
2u
where

3-4v, for plane strain
x= , (14)

(3—v)/(I +v). for plane stress
¥(z) is any analytic function of the variable - = x+ iy at the plane containing the void and

having Poisson’s ratio v. The particular solution of the displacement field surrounding an
ellipsoidal void subjected to bi-directional stresses at infinity, say P, and P,, is constructed
by enforcing () of eqn (13) to satisfy the pertinent boundary conditions.

Customarily (i.c. Ref. [9]) the known expression of (&) for a simpler circular void in
an auxiliary plane, &, is utilized to get the proper expression for an ellipsoidal void via
geometrical transformation from an auxiliary planc & into the physical plane z, namcly

= R(S+mfd) (13)

5o that the terminal solution (leaving aside the algebra involved) reads

o o PPN (PP 2
'//(s)-R< 3 >< §)+< 7 )R i (16)

Combining together eqns (13), (15) and (16) renders the exact relationship between the
foading system, P, and P, and the induced displacement surrounding the void, provided
the displacement is small enough not to perturb the solid behavior.

4. CREEP FLOW ANALOGY AND GEOMETRICAL NONLINEARITY

The analogy to creeping flow is based on the similarity between the constitutive
cquation of an incompressible elastic continua, namely

| v
=8+ T Gl (17

£, =
Y 2u 1 =2

where

lim e v/(1=2v) >0 as v—1/2 (18)

and the constitutive equation of linear viscous material described by eqn (6). By setting
i = n. &, = £, and renaming the displacement field («.2) in eqn (13) as the velocity field,
the speed at which the void boundary is moving is described in an exact form, by eqns (16)
and (13) as
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(x+l) Pl+P2 . m P|—'P2 Zezi’
wovie = S0 (P D ()] o

for( =e?and 0 < ¢ < 27.
After a short-time interval, Az (short enough not to affect significantly solution (19)
by variations in x, m or R), one should update the shape of the void by

Az(s) = [u(s) +iv(s)]Ar. 0)

Hence. the new shape 3(s) = =(s) + Az(s), based on eqns (15), (19) and (20), is rephrased as

P ‘)eZix
l—6+6<P TP, )

[+0

X =RUA+)\e®+e " |m

, O<¢p<2n (21)

where

(x+1

|+P2)A(.

Let us assume that the new configuration, 2(s) retains an ellipsoidal shape, though with new
variables R, s, & The expression for this new cllipse is written most generally from eqn
(15) as

3(s) = R +¢™* i ). (22)

The description of the ellipse by eqn (22), with the new variables R, #it and 4, is equivalently
described in eqn (21) in terms of the old variables R, m, a. Therefore, by comparing the
terms of eqn (22) with those of eqn (21), one recognizes that the updated variables are
related to their previous values by

R = R(1+6) (23)
P, 2c'”‘
=049 =
+ (P, +P, ) m
m = complex absolute value of [m (24)
143
— P\ 2e™
-4
] +9 (P +P, ) m
& = = argument of |m . (25)

2 140

Equations (23)-(25) constitute the basic algorithm for the numerical tracking of the ellip-
soidal damage evolution. After each time step, At (“*hidden™ in §), the ellipse gets a slightly
different configuration according to eqns (23)-(25), beyond a certain creeping time the
simulation is terminated. As a typical example, a time history simulation of void rotation
and expansion in a power law creeping material for unidirectional tension is shown in Fig.
2. A visual observation in Fig. 3, using “'silly putty” material (commercial name for a highly
time-dependent synthetic compound) validates phenomenologically the suggested solution
of Fig. 2. When the load is reversed from unidirectional tension (P,) to unidirectional
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Fig. 2. The simultancous void rotation and expansion during a power-law creep (n = 0.5) at a
constant (vertical) load solved by eqns (21)-(25).

compression (~ £,) the rotation of the voids is also reversed but not at the same rate (as
is evident from Fig. 4) and the void is eventually contracted into a narrow slit.

5. SELF-CONSISTENT SOLUTION
Consider a sample of visco-plastic solid which contains equally distributed voids, all
of which have the same ellipsoidal size and orientation. The volume fraction of the voids
is, of course, a time-dependent variable and denoted as /. Let us define a characteristic unit
cell of volume ¥ in the body which comprises a single void (with volume V') and
surrounding matrix of volume ¥ such that

= -y, (26)

The volume fraction of the void within its cell (or shortly the porosity) is set to be the
sume as the porosity of the whole body, namely

) Vh‘) Z V‘c)
/= A7 Sv

(3. = sum over all cells). 27

As soon as the load is applied, the body starts to creep. In view of the expansion/contraction
of the voids, the porosity is continuously changed (increased under tension and decreased
under compression) as are the dimensions of the cell itself. In the “*self-consistent™ approach
the interaction between the voids is gained by affecting the global material response (namely
the viscosity n(£)) as if the material behaves homogeneously with the properties of the
representative cell with the void. In specific terms, the time variation of the average creeping
rate of the overall body., £, is continuously resolved and modified by #. This average creeping
rate is defined in terms of the current porosity, /. the average matrix creeping rate £™ and
the local void creeping rate £ in a rule-of-mixtures-like form as

E=EM(1 =)+ (28)

£m — (iiﬁ)h" 29
= c pA
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Fig. 3. Damuage evolution sequence of voids expanston and rotation untif coalescen
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(a) (b)
Fig. 5. A representative cell, (a) before the creep starts, (b) at the final rupture point.
is known from the creeping power law of eqn (1) and ¢ is the equivalent matrix stress
(eqn (2)) based on the current stress components at the ligament. £ is calculated from the
current geometry and boundary motion of the void via eqn (10). The repeated updating of
" in eqn (29) calls for extensive use of the tensorial form of eqn (6), which is

. | I
g = Z}msf, ! (6),
where
n'™ = (1/3)CE")" (M
and
g = f £ dr. (30)

With the matrix strain components of eqn (30) the new ligament dimensions are recomputed
with associated modification of the stresses at the matrix ai™ (and hence ¢ in eqn (29)).
By a proper account for the current growth of the void, the porosity, f, is updated by eqn
(27) which affects the global creep rate £ via eqn (28), and so forth at any time-step
increment.

6. RESULTS AND DISCUSSION

The inception of rupture by void coalescence is reached in the suggested model at the
point where the ligament cross-section (along either the X- or Y-axis, whichever comes
first) shrinks to zero. Under vertical tension the computations lead to coalescence between
adjacent voids (in the manner shown in Fig. 5) transverse to the load direction, as usually
exhibited in testing[2). As was observed in Fig. 3 and simulated by Fig. 2 each void
undergoes creep with a substantial amount of rotation and expansion. Its ellipsoidal shape
(m) is changed continuously but not monotonously. This secms to be more pronounced in
ellipsoidal voids the initial angles of which with respect to the load (x,) are larger. The void
shape progressively becomes more circular (m is decreased in Fig. 6) but later on during
the creep, it becomes more elongated (m — 1) towards the direction of the load, which is in
agreement with the series of photographs of Fig. 3. This fact has an immediate consequence
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Fig. 6. The effect of the initial position a, of the elliptical void (4, = 5) on the evolution of its shape.
Similar “‘excursions” were actually observed (see Fig. 3).
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Fig. 7. Evolution of porosity of various initial voids positions. Different growth rates are exhibited
(Ao =10,n =05, f, = 5%).
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Fig. 8. Evolution of porosity al various aspect ratios i, Different growth rates are exhibited
{2, = 45", n = 0.5, f, = 10%).

on the evolution rate of the damage (as shown on Fig. 7). namely. voids with higher «,
decrease the creep-rupture lifetime. Much the same conclusion can be drawn with respect
to the effect of the aspect ratio 4 described in Fig. 8, where higher 1 causes faster damage
rate.
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Fig. 9. The shape evolution at various rate sensitivity indexcs. At moderately high load (a/0, 2 1),

the rate of change of the void shape is decreased with increasing the rate sensitivity index (f, = 10%).

Note that the data points are evaluated at a constant time interval so that the spacing of the cross
points represents the rate of evolution.

The most common shape of initial voids in nature is circular (or nearly circular say,
Ay = 1.05, which is equivalent to m = 0.024). Under such conditions the shape evolution
and rotation for various rate sensitivity indexes is shown in Figs 9 and 10. The smaller the
index the less the time for rupture, The damage growth is shown in Fig. 11 and the strain
growth in Fig. 12 with the same trend —faster rupture at low sensitivity index (provided
P, > a,). By properly normalizing these various creep histories with their respective time
to rupture, ¢, and their respective porosity at rupture, f,, a unified behavior of the damage
and strain evolution emerges as a single curve, plotted in Figs 13 and 14 along with other
damage theories. A relatively close resemblance is exhibited between the phenomenological
damage models of Rabotnov-Kuchanov (given in Ref. [11]), Dyson-McLcan[12] and the
present one. The conceptual difference between the theories of Rabotnov-Kachanov and
Dyson-McLean and the present onc is that the former need to postulate a damage-rate law
(with pre-evaluated experimental constants) whereas the one suggested here needs only to
pre-set the initial damage (i.e. the initial volume fraction of the voids). The former theories
do not include the effect of the creeping rate on the damage evolution at constant load as
was suggested here (e.g. 28). On the other hand the present model is somewhat deficient
compared to the theories of Rabotnov-Kachianov and Dyson-McLean by being expressed
in a semi-numerical fashion rather than analytically, thus less attractive for engineering
applications. The similarity between the three models is that they are all inherently non-
steady under constant load. That is to say that a strict steady-state creep cannot be simulated
by any of the¢ above theories. However, a nearly steady state is clearly feasible as exhibited
for example, in Fig. [2. The small amount of deviation from steady-state creep rate reflects
the role of the porosity evolution in enhancing the accumulation of plastic strain. This creep
behavior appears only slightly sensitive to initial porosity at the range of, say, up to 10%.

The vast experimental data, collected by Woodford([13] is matched well with the
suggested model (Fig. 15). It characterizes the ability of the present solution to predict the
rupture strain of creeping metals. The scatter of the experimental data (and likewise in the
model) stems from the fact that the strain at rupture (&) is not so well defined as compared
to the time to rupture (r,). Closc to the rupture time, the strain varies very rapidly as is
always the casc in the tertiary region of creep processes and hence the measurement of such
terminal strain is highly ambiguous. By the same token, it is difficult to pick the correct
value of ¢ in our theoretical simulation. For the purpose of consistency. one can set the
rupture strain, ¢, to be proportional to the Monkman-Grant[14] parameter, C,
(C,i = Equm " 1 Where &, is the minimum strain rate existing in the tertiary creep), such that
& = Acpr* C.. The proportionality factor, Acpr (having the physical meaning of creep
damage tolerance{l1. 15]). spans in most metals between 2 and 20[15]. We have chosen it
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Fig. 10. The rotation rate of a void (4, = 1.05. f, = 10%) at various rate sensitivity indexes.
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as 8 to resemble other works([11, 12]. At low porosity (till, say, 10%) and low rate sensitivity
index (till, say, 0.1), the Monkman-Grant parameter appears to be close to n(1 —£,), hence
a *“quick™ prediction of rupture strain is approximately & =~ 8n(l —f;). For higher values
of n, the time to rupture is longer, and C,, takes somewhat higher values in conjunction
with the damage growth f.

The important evidence of the induced anisotropy in the mechanical behavior of the
creeping solid due (probably) to the preferred orientation of the rotated voids, is still not
incorporated in the present model. However, some other by-products as, for instance, void
closure under compression, the effect of hydrostatic pressure, the material response to bi-
axial loading at various proportions, etc. are essentially included in the suggested model
but await parallel experiments for validation.

SA8 24:6-C
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